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Abstract 

The dielectric properties of soils and plastic targets are given. The approach for finding exact pole 
locations from a dielectric infinite slab, a dielectric sphere, and a dielectric infinite cylinder is 
presented (and applied). The exact poles for the slab and sphere are found for various sizes and 
dielectric properties. There is a discussion (and use) of Carl E. Baum's perturbation formulas for 
dielectric slabs and spheres. George Hanson's results (formulas, from using Carl's same approach) 
are given (and used) for an infinite dielectric cylinder. The poles found from the perturbation 
formulas are compared with the exact poles and an "effective" region for using the perturbation 
formulas is established. 
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L   Introduction 

The problem of finding buried UXO (unexploded ordnance) and dielectric mines has been well 
documented in recent years. According to the Department of Defense there are approximately 
nine million acres of past and present test ranges that contain ordnance [MMWG, 1996]. As a US 
citizen what is perhaps most disturbing is that there are between 1200 and 1700 Formerly Used 
Defense Sites (FUDS, now public or private land) which are believed to be contaminated 
[MMWG, 1996]. As for dielectric mines, war zone areas like Bosnia, Iraq, and Afghanistan have 
demonstrated just how lacking in technology we are in finding buried plastic targets. 

As far as R&D funding goes we have reached a point where the government wants something 
that can tell the user whether or not the underground object that is being detected is in fact 
ordnance (and perhaps what type of ordnance it is) as opposed to just being an old soup can, 
plastic toy, or ordnance that has exploded and is now environmentally inert. Well if these things 
were in the air we might be able to do this; however, distinguishing objects underground can be an 
electromagnetic nightmare. 

A common cry from the scientist and military personnel working on this project has been to 
establish a library of what the electromagnetic pole signatures of the various ordinance and mines 
look like. With such a library a user could know if what has been detected is of interest. 
Developing this library, however, is no simple task. In 1994 Carl E. Baum developed an approach 
for using perturbation formulas (much more condensed, yet approximate, mathematical formulas) 
to find the signatures of basic dielectric geometrical shapes in a dielectric medium [Baum, 1994]. 
It is the purpose of this report to establish the effectiveness of these formulas by comparing them 
to the exact cases. If their effectiveness is proven then the same approach could be used in 
creating our library. 

II. Dielectric Properties of Soils and the Ordnance 

Scattering of electromagnetic waves occur when there is a difference between the dielectric 
properties of the target and the medium [McCann et al., 1988]. Dielectric targets of interest in the 
ordnance and mine problem typically have a permittivity, e, of about 2.5 e0. The earth,   _ 

unfortunately, is not as predictable. 

The dielectric properties of soil not only depend upon the type of soil but also the amount of 
moisture (and minerals) in the soil. For clays as the water content rises from 0 to 40% e rises 
quickly from 3 to =20 e0 [Wang, 1978]. For sandy soils B rises from 3 to =30*0 [Wang, 1978]. 
The conductivity, a, of the soils rises from =.001 to =. 1 S/m for a rise in water content. 

For the results found in the following pages I will use a target permittivity, e2, of 2.5 e0 and 
will look at soil permittivities, s,, ranging from 4 to 20e0 and conductivity's, ax, ranging from 
.001 to 1 S/m. I will also look at the case where the target is in water ex = 81 e0 (and salt water 

s, = 81 e0, a, = 4 S/m), as well as the case when ex» s2 



m. The Exact Approach 

The signature differences of the scattered waves from a target not only depend upon these 
dielectric differences but also upon the various shapes and sizes of the targets. The scattered 
wave-forms for basic geometric shapes have been derived from many different physicist. The 
poles of these waves can be found by solving for the poles of the scattering coefficients. In the 
following section I will present these derived wave-forms and there coefficients for a dielectric 
sphere, infinite slab, and infinite cylinder. 

Before I present these three cases, however, I should define a few important terms. The 
relative dielectric constant, sr, will be defined as 

target     e2 er = — = — 
medium    ex 

The propagation constants for the medium, y,, and the target, y2, are 

r,=*V/^, 1+- 
se, 

and 
y2=s^fi0e2 

where s = Q + jo = the complex frequency. 
Finally, the ratios of these propagation constants, £, will be defined as 

Z = ^ = sr-\ 1 + 
S£, 

Sphere: 

The series solution for a plane wave falling upon a sphere was first introduced by Mie in 1908. 
In 1941 Julius Adams Stratton provided a more extensive and complete model of the problem in 
his infamous book entitled Electromagnetic Theory. For derivations of the following equations I 
refer you to Stratton, 1941 or the Laplace form in Baum, 1992. 

The scattered electric, E, and magnetic, H, waves from a dielectric sphere are 

2n + l 



Where r is the radius of the sphere and an and bn are the scattering coefficients. These scattering 
coefficients are functions off ,r and y2r, and they depend upon Bessel functions. Where here I 
will be using the modified spherical Bessel functions: 

KA }     x £0  pKn-p)r 

/.(x) = i[-*.(-x) + (-ir,*.(x)] 

The scattering coefficients have been derived as 

ir    . /   W-,   ^      ■<   dr^nir^r)] -lr2riAr2r)]h(rs)-r2"„(r2ry——-L 

g 7\T 

a. - 

ir    .,   W, ,   %      • /   Arsk»(rrf] 

[ri"n(y2r)] h(rs)-y2nn(y2r)1        — 

b = 

[^"„Ov)] K<yf)-Yinn<yir)-—-j—— 

In solving for the poles of the scattered waves, an will correspond to the H-modes, and bn will 
correspond to the E-modes. Therefore, the exact poles, sa, of the H-modes for a dielectric sphere 

can be found from the equation 

Ir     • ,     W, r     x         • /     JrA,(7V)] -[Y2ri„{r2r)]K(yxr)-y2nn(y2r)±  =0 
q Y\r 

and the exact poles of the E-modes for a dielectric sphere can be found from the equation 

r     • /     Wir     x • /     JrA,0v)]  _n 

Slab: 

We will now consider the case of the infinite dielectric slab, with thickness /, in a dielectric 
medium. Technically there would not be natural frequencies since the pole locations depend upon 
the direction of the incident wave [Baum, 1994]. However, since we are really interested in finite 
size targets we will assume normal incidence. Making this assumption the scattering coefficient 
R0, has been derived as [Baum, 1994]: 

[«f-ljsinhfr,/) 
0    2£co&h(y2I)+[? + l]sinh(y 2/) 



Note that there is only one scattering coefficient here. This is because the magnetic field is 
polarized (parallel to the electric field, so the E and H poles are the same). This implies that the 
exact poles, sa, for the dielectric slab can be found from the equation 

2%cosh(r2l) + [? + ljsinhOV) = 0 

Cylinder: 

For the dielectric infinite cylinder the we do not have the spherical wave-forms that we had in 
the case of the sphere. Therefore, the Bessel functions in the scattering coefficients will be the 
standard first and second order Bessel functions (not spherical or modified spherical). These 
Bessel functions in the integral form are 

1 * 
Jn (x) = — f cos(x sin 6 - n6)d0 

"■ 0 

and 
Hn(x) = Jn(x)-iYn(x) 

where 

Yn(JC) = - f sin(xsin0-n6)d0--\\en* + (-iye-"<yx^'d<f> 
yt  0 0 

The scattering coefficients att, and bn derived in the © form (s = jro) are [Balanis, 1989] 

a  = Jn<y2r)Ju(yf)-$J  (yxr)Jn(y2r) 

&m(r2r)Hm'(rlr)-Jm'(y2r)Hm(rlr) 

VAr 2r)Ur /> - •/„' (rs)J„(r2r) 
b = 

JÄr2r)HArs)-$Jn (y2r)H„{rs) 

In the case of the dielectric cylinder the an coefficient corresponds to the E-modes and the bn 

coefficient corresponds to the H-modes. Therefore, the exact poles, coa (sa =j aa ), for the 
infinite dielectric cylinder can be found by 

4f„(r2r)H„' (rir)-Jn' (r2r)Hn(rir) = 0 
for the E-modes and 

Jn(r2r)Hn'W)-#,'\r2r)Hn{y,r) = 0 
for the H-modes. 

IV. Perturbation Formulas 

To the casual observer these exact formulas probably don't look so bad. However, anyone 
who has ever had to expand Bessel functions will tell you that finding the poles of functions that 
contain multiples and derivatives (and multiples of derivatives) of Bessel functions would be a 



cumbersome task. Recall also that these exact formulas are for nice geometrically shaped objects. 
Pole functions for real ordnance cases would be even more busy (much more). With this in mind 
Carl E. Baum made some approximations that would make these functions easier to work with for 
the slab and the sphere. The hope is that these perturbation functions will give results so close to 
the exact functions that others will be able to apply similar approximations to the exact pole 
functions for the real ordnance cases. The following paragraphs will show Baum's results for the 
slab and the sphere from his July 24, 1994 interaction note (IN 504). 

Slab: 

For the slab we will define the natural frequencies as 
sa = safi + Asa 

where sa 0 is found from the limiting case when £ -» a> giving 

smh{saQ^0e2l) = 0 

note that this number will be imaginary. For Asa I refer you to Baum's work where 

As„ 

I     r 
2er2 

4Vo*2l 
1 + i-S- 

2 Wi 

Sphere: 

The same method applied to the sphere has similar results where the poles are still 
sa = safi+Asa 

Now, however, we will have different sBi0; one for the H-modes and one for the E-modes. For 

the H-modes as £ -> a> we see that the exact formulas can reduce to 

/„(y 2r) = 0, or in other words: /„ (sa0<Jn0e2r) = 0, 

For the E-modes as £ -> <» we can see that the exact formulas can reduce to 

[r 2rK (r 2r)] = °»or in other words: [5«,o V/vv7'« (5«.o V/vvl] = ° 
Again, sa 0 is a purely imaginary number. The Asa term for the sphere is nearly identical to the 

slab where 

A*  *- 

I 
er2 

4MO e2r 
1 + - 

2 safiex 

for the H-modes and 

As  *■ 
er2 

4M~O e,r 
1 + - (^.oV/wO2 

2 safiex J (safi Jti0e2r)2 + n(n +1) 

for the E-modes. 



Cylinder: 

A fellow SRP worker (for RDL) George Hanson used Carl's same approach for an infinite 
dielectric cylinder. The results again, were very similar. Where sao = jcoao, for the E-modes sa0 

can be found from J„(y 2
r) = 0, or in other words: J„((Dafi V/wO = 0, and for the H-modes 

sa0 can be found from Jn\y2r) = 0, or in other words: J„ icoa04pioe2r) = 0. For Asa George 

found 
I   r 

/    cr, 

for the E-modes, and 

for the H-modes. 

As. 

As. 

-er2 

I     r 
-S.2 

4~M 0*7* L 

1 + - 
2 safisx 

y[Ji~o e2r 
1+- 

(^.oV/W^ 
2^,o^iJ(^.oV^W')2-"2 

V. The Results 

The results were found with great assistance from the Mathcad 6.0 Plus software using the 
root finder function. However, in order to find the exact (and perturbed) function's poles for the 
first three E-modes and H-modes the functions had to be greatly simplified before they could be 
put into Mathcad. This meant analytically expanding, multiplying, and taking the derivatives of the 
first three Bessel, Hankie, modified spherical Bessel, and modified spherical Hankie functions 
(then reducing them). Reducing them was a tedious but necessary task (Mathcad's root finder 
wouldn't work with the functions in their expanded form). The root finder itself uses the secant 
method (similar to the Newton method). It was still necessary to make some adjustments to the 
software before it would work, and anyone who has ever used this root finder knows that it is 
highly dependent on initial guesses. 

In the case of the cylinder I was unable to find the "exact" poles. The problem revolved around 
the standard Newman functions (and their derivatives). The software could calculate values for 
the exact functions, but to set them equal to zero to find the roots would cause the software to 
lock up. I had to truncate part of the integration involved in the Newman functions in order to get 
results. Therefore, what poles were found for the dielectric cylinder were not "exact." These poles 
did, however, provide a "check" for the poles from the perturbation formulas. Note that I could 
find poles from the perturbation formulas for the cylinder but not from the exact formulas (hence, 
the perturbation formulas are already proving their usefulness). 

In order to show all of my results for this project I would need the paper equivalent to that 
used in making War and Peace. Therefore, I will instead list all of the cases that I found poles for 
and present a graph that shows the most effective regions for the perturbed functions. 



The following is a list of the 42 different cases that poles were found for both the exact and the 
perturbed functions for the dielectric slab and sphere. 

eje0 
CTL Sll^o r.L 

4 0..01..1 2.5 10cm 

5 0. .01. .1 2.5 10cm 

5 0. .01. .1 2,5 50cm 

6.25 .094..15 £5 10cm 

10 0..001..01. •1, .17 2.5 10cm 

10 .2..235..27 ,•3 2.5 10cm 

10 0. .01. .1 23. 50cm 

20 0..01..1..2. ■3, .4 2.5 10cm 

81 0..01..1.1.36.2.6.4 Z5 10cm 

1E+09 0. .1.1.0 I 10cm 

1.00E+09 1.0E+07 1 10cm 

1E+09 1.5E+09 i 10cm 

1E+09 2.1E+09 i 10cm 

Condensing all 42 different cases into a graph that would establish an effective region for the 
perturbation functions required two jobs. First I found the percent errors for all 42 cases between 
the exact versus perturbed poles. Then I established two unit-less parameters, T and er, for 

graphing. Where: — T = - and     e= — 

In the following graphs everything inside the curves represents a "good" region. In the first graph 
the poles from the perturbed functions were less than 6% off for the region inside the curve, and 
in the second graph (next page) the poles from the perturbed functions were less than 2% off. 
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Graph 1: < 6% error for perturbed functions 
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Graph 2: < 2% error for perturbed functions 
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Graph 3: An overlay of the 2% and 6% error graphs 

VL Discussion 

The first point that I would like to make is about the nature of the poles themselves (exact or 
perturbed). The closer ex gets to e2 the more shift to the left for the real components (with very 
little change in the imaginary terms). I should also point out that for the exact poles there was a 
non complex pole that doesn't show up using the perturbed functions. However, since real roots 
don't oscillate they wouldn't show up on radar anyway. I did notice, as theory dictates, a 
"layering" effect for the poles of the sphere and slab. 
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The effect of the conductivity term, <7,, is 

OOO 

O 
O 

O 

O 
O 

O 

Sphere/Slab Poles for a, =0 

JG>on I 
000 

on. 
Sphere/Slab Poles for increasing cr, 

The greater the conductivity of the soil the more acutely angled shaped the pole-layer became. 
Where the perturbation formulas usually had greatest errors for the most damped of those poles 
(poles that were furthest left). 

As for the size of the target usually being 10cm, generating poles for other size targets would 
simply involve the following: if the target is increased in size by some factor, k, then the poles 
would be decreased by this same factor and vice-versa (for ax =0; this is only an approximation 
for other cr,). 

For cases where ex»s2 increasing ex by a factor of 100 decreased the real part of the poles 
by a factor of 10 (for s2=\). The imaginary term remained the same. 

There were some unexpected results in comparing the poles for the exact versus perturbed 
functions. Notice from the graphs (in the result section) that there are many cases where some er 
would contain "good" values but for a, =0 (x=0) the percent errors were to large to be 
considered "good." I noticed when compiling the percent errors that as cr, is increased (hence, as 
x is increased) the error decreased until it reached some minimum, then the error would begin to 
increase until it was too large to be considered "good." This explains the reason for the similar 
shapes of the two graphs ("<6% error," versus "<2% error"). 

The effectiveness region established for the perturbation functions would be applicable to 
many different soils. Where for soils (with plastic targets) x ranges between 0 and 1 and er ranges 
between 0.1 and 0.6. The "<6% error" graph shows "good" results for x ranging (nonlinearally) 
from 0 to 1.75 and er ranging (nonlinearally) from 0 to 0.4. The best results from the perturbed 
functions correspond to low-moisture soils. 

In comparing the poles from the perturbed formulas for the cylinder with the poles from the 
"near" exact formulas I was able to get low percent errors. In fact the results seemed to show 
basically the same effectiveness region that was found for the sphere and slab case. However, 
since I was unable to get the "exact" poles (due to the computer limitations discussed earlier) I 
will not be presenting these results. 
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VII. Conclusions 

The exact approach for finding the natural signatures for a dielectric sphere, and an infinite 
dielectric slab and cylinder were presented. This approach was used to find these poles for various 
size targets and different dielectric mediums. 

An approximate approach for finding these same results was presented. The results found from 
these approximation formulas were compared to the exact poles. A region of effectiveness was 
established for these approximating formulas. This region varied with for x ranging (nonlinearally) 
from 0 to 1.75 and sr ranging (nonlinearally) from 0 to 0.4. The effective region theoretically 
contains many different types of soils. The approximation formulas showed the best results for 
low-moisture soils. 

The approximation formulas proved their usefulness when the "exact" poles could not be 
found for a dielectric infinite cylinder. Although, "nearly" exact poles for the cylinder showed that 
the effectiveness region is close to that of the dielectric slab and sphere. 

With these three very different shapes having basically the same effectiveness region, I feel 
fairly confident that this effectiveness region will be the same for any of the specific buried plastic 
ordnance cases. Therefore, the approximation approach made by Carl E. Baum will be of great 
assistance in developing a library of the natural frequencies of different plastic ordnance. 
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